Em teorias de campos na redecampos de férmions experimentam (pelo menos) uma duplicação no número de tipos de partículas, correspondendo a pólos extras no propagador.

Uma rede é um arranjo periódico de vértices. Se nós aplicarmos uma transformada de Fourier a uma rede, o espaço de momentos é um toro com a forma do domínio fundamental da rede recíproca chamado de zona de Brillouin.

Isto significa que se observarmos as soluções de ondas sobre uma rede, o autovalor do operador de férmions em função do momento (vetor de onda) será periódico.

Para um campo bosônico livre, a ação é quadrática e, por isso, os autovalores tem a forma

,
 / = [          ] ,     [  ]    .

ou a forma similar onde . Para escalas de momento muito maiores que o espaçamento inverso de rede (i.e. para autovalores próximos de zero) somente os momentos em torno de k=0 são dominantes e nós temos uma única espécie de bóson.

Férmions, por outro lado, são descritos por equações de primeira ordem. Então, poderíamos ter algo que será como

 / = [          ] ,     [  ]    .

pelo menos com uma dimensão espacial, sendo os casos dimensionalmente mais altos são análogos. Se nós observarmos o limite inferior dos autovalores, nós veremos duas regiões diferentes; uma sobre k=0 e a outra sobre k=π/L. Eles comportam-se como dois tipos de partículas. Isto é chamado duplicação de férmion e cada espécie de férmion é chamada um gosto (em analogia ao sabor dos quarks).





Isospin fraco e hipercarga fraca

Férmions levógiros no Modelo Padrão[22]
1ª Geração2ª Geração3ª Geração
FérmionSímboloIsospin FracoFérmionSímboloIsospin FracoFérmionSímboloIsospin Fraco
Neutrino do elétron
ν
e
Neutrino do múon
ν
μ
Neutrino do tau
ν
τ
Elétron
e
Múon
μ
Tau
τ
Quark upuQuark charmoso
c
Quark top
t
Quark DowndQuark estranho
s
Quark bottom
b
 / = [          ] ,     [  ]    .
Todas as partículas levógiras (regulares) acima possuem anti-partículas dextrógiras correspondentes com isospin igual e oposto.
Todas as partículas dextrógiras (regulares) e antipartículas levógiras possuem isospin fraco igual a 0.

Todas as partículas têm a propriedade chamada de isospin fraco (símbolo T3), que serve como um número quântico aditivo que restringe como a partícula interage com os 
W±
 da força fraca. O isospin fraco desempenha o mesmo papel na interação fraca com 
W±
 que a carga elétrica desempenha no eletromagnetismo, e a carga de cor na interação forte; um número diferente com um nome similar, carga fraca, discutida abaixo, é usada para interações com o 
Z
. Todos os férmions levógiros possuem como valor de isospin fraco  ou ; todos os férmions dextrógiros tem isospin 0. Por exemplo, o quark up tem  e o quark down tem . Um quark nunca decai pela interação fraca em um quark com o mesmo : Quarks com um  de  somente decaem em quarks com  e vice-versa.

Decaimento do π+  através da interação fraca

Para qualquer dada interação, o isospin fraco é conservado: A soma dos números de isospin fraco de partículas entrando na interação é igual a soma dos números de isospin fraco das partículas saindo da interação. Por exemplo, um  (levógiro), com um isospin fraco igual a  normalmente decai em um 
ν
μ
 (com  / = [          ] ,     [  ]    .e um 

μ+
 (como uma antipartícula dextrógira, ).[23]:

Para o desenvolvimento da teoria eletrofraca, outra propriedade, a hipercarga fraca, foi inventada, definida como:

 / = [          ] ,     [  ]    .

onde  é a hipercarga fraca de uma partícula com carga elétrica Q (em unidades de carga elementar) e isospin fraco Hipercarga fraca é a geradora da componente U(1) do grupo de gauge eletrofraco; enquanto algumas partículas têm isospin fraco igual a zero, todas as partículas de spin  conhecidas têm hipercarga fraca diferente de zero.

Tipos de interações

Existem dois tipos de interação fraca (chamados de vértices). O primeiro tipo é chamado de “interação de corrente-carregada” porque os férmions fracamente interagentes formam uma corrente com carga elétrica total não nula. O segundo tipo é chamado de “interação de corrente-neutra” porque os férmions fracamente interagentes formam uma corrente com carga elétrica total nula. Ela é responsável pela (rara) deflexão de neutrinos. Os dois tipos de interação seguem diferentes regras de seleção. Essa convenção de nomenclatura é muitas vezes mal interpretada para rotular a carga elétrica do bósons W e Z, entretanto a convenção de nomenclatura antecede o conceito de bósons mediadores, e claramente (pelo menos no nome) rotula a carga da corrente (formada pelos férmions), não necessariamente os bóson.

Interação de corrente-carregada

O diagrama de Feynman para o decaimento beta-menos de um nêutron em um próton, elétron e um antineutrino do elétron, por intermédio de bóson W- pesado

Em um tipo de interação de corrente carregada, um lépton carregado (tal como um elétron ou um múon, tendo carga -1) podem absorver um bóson W+ (uma partícula de carga +1) e ser deste modo convertida em neutrino correspondente (com carga 0), onde o tipo (“sabor”) do neutrino (elétron, múon ou tau) é o mesmo do tipo de lépton na interação, por exemplo:

 / = [          ] ,     [  ]    .

Similarmente, um quark down (d com carga -⅓) pode ser convertido em um quark up (u com carga +⅔) ao emitir um bóson W⁻ ou ao absorver um bóson W⁺. Mais precisamente o quark down se torna uma superposição quântica de quarks up: isso que dizer ele possui a possibilidade de se tornar qualquer um dos 3 tipos de quark up, com as probabilidades dadas pelas tabelas da matriz CKM. Por outro lado, um quark up pode emitir um bóson W⁺, ou absorver um bóson W⁻, e deste modo ser convertido em um quark down, por exemplo:

 / = [          ] ,     [  ]    .

O bóson W é instável e portanto decairá rapidamente, com um tempo de vida muito curto. Por exemplo:

 / = [          ] ,     [  ]    .

Pode ocorrer o decaimento de um bóson W em outros produtos, com diversas probabilidades.[24]

No assim chamado decaimento beta de um nêutron (veja a imagem acima), um quark down dentro do nêutron emite um bóson  virtual e é deste modo convertido em um quark up, convertendo o nêutron em um próton. Por causa da energia limitada envolvida no processo (i.e., a diferença de massa entre o quark down e o quark up), o bóson virtual W⁻ pode carregar somente energia suficiente para produzir um elétron e um antineutrino do elétron — as duas menores massas possíveis entre os futuros produtos de decaimento.[25] Ao nível dos quarks, o processo pode ser representado como:

 / = [          ] ,     [  ]    .

Interação de corrente-neutra

Em interações de corrente neutra, um quark ou um lépton (e.g., um elétron ou um múon) emite ou absorve um bóson  neutro. Por exemplo:

 / = [          ] ,     [  ]    .

Assim como os bósons , o bóson  também decai rapidamente,[26] por exemplo:

 / = [          ] ,     [  ]    .

Diferente da interação de corrente-carregada, cujas regras de seleção são rigidamente limitadas pela quiralidade, carga elétrica, e / ou isospin fraco, a interação de corrente-neutra por  pode causar a deflexão entre dois férmions quaisquer do modelo padrão: Tanto partículas ou antipartículas, com qualquer carga elétrica, e ambas as quiralidades levógiras e dextrógiras, embora a intensidade da interação difere.

O número quântico da carga fraca () serve o mesmo propósito na interação de corrente neutra com o  que a carga elétrica (, sem subscrito) faz na interação eletromagnética: Ele quantifica a parte vetorial da interação. Seu valor é dado por:[27]

 / = [          ] ,     [  ]    .

Já que o ângulo de mistura fraco , a expressão entre parêntesis , com seu valor mudando pouco com a diferença de momento linear (chamada de “running”) entre as partículas envolvidas. Consequentemente

 / = [          ] ,     [  ]    .

uma vez que por convenção , e para todos os férmions envolvidos na interação fraca . A carga fraca dos léptons carregados é próxima de zero, logo eles interagem na sua maior parte com os bósons Z pelo acoplamento axial.

Teoria eletrofraca

O Modelo Padrão de física de partículas descreve a interação eletromagnética e a interação fraca como dois aspectos de uma única interação eletrofraca. Essa teoria foi desenvolvida por volta de 1968 por Sheldon GlashowAbdus Salam, e Steven Weinberg, e eles foram premiados com o Prêmio Nobel de Física de 1979 por seus trabalhos.[28] O mecanismo de Higgs fornece uma explicação para a presença de três bóson de gauge massivos (, os três portadores da interação fraca), e o fóton sem massa (, o portador da interação eletromagnética).[29]

De acordo com a teoria eletrofraca, a energias muito altas, o universo tem quatro componentes do campo de Higgs cujas interações são portadas por quatro bósons de gauge sem massa — cada um similar ao fóton — formando um dubleto escalar complexo do campo de Higgs. Da mesma forma, existem quatro bósons eletrofracos sem massa. Entretanto, a baixas energias, essa simetria de gauge é quebrada espontaneamente para a simetria  do eletromagnetismo, já que um dos campos de Higgs adquire um valor esperado de vácuo. Ingenuamente, seria esperado que a quebra de simetria produzisse três bósons sem massa, mas em vez disso esses três bósons de Higgs “extra” são incorporados nos três bósons fracos, que então adquirem massa pelo mecanismo de Higgs. Esses três bósons compostos são os bósons  e  realmente observados na interação fraca. O quarto bóson de gauge eletrofraco é o fóton () do eletromagnetismo que não se acopla a nenhum outro campo de Higgs e portanto permanece sem massa.[30]

Essa teoria fez uma série de previsões, incluindo a previsão das massas dos bósons  e  antes de suas descobertas e detecções em 1983.

No dia 4 de Julho de 2012, as equipes experimentais CMS e ATLAS no Grande Colisor de Hádrons (Large Hadron Collider) anunciaram independentemente que eles confirmaram a descoberta formal de um bóson anteriormente desconhecido de massa entre 125 e 127 GeV/c², cujo comportamento até então era “consistente com” um bóson de Higgs, embora adicionando uma nota cautelosa que mais dados e análises eram necessários antes de identificar positivamente o novo bóson como sendo um bóson de Higgs de algum tipo. Até o dia 14 de Março de 2013, a existência de um bóson de Higgs foi provisoriamente confirmada.[31]

Em um caso especulativo em que a escala de quebra de simetria eletrofraca fosse reduzida, a interação ininterrupta  acabaria se tornando confinante. Modelos alternativos onde o  se torna confinante acima dessa escala parecem quantitativamente semelhantes ao Modelo Padrão a energias mais baixas, mas dramaticamente diferentes acima da quebra de simetria.[32]







Em teoria de gauge, um laço de Wilson (nomeado em relação a Kenneth G. Wilson) é um gauge-invariante observável obtido da holonomia da conexão gauge em torno de um dado laço. Na teoria clássica, a coleção de todos os laços de Wilson contém suficiente informação para reconstruir a conexão gauge, até a transformação gauge.[1]

Em teoria quântica de campos, a definição de laços de Wilson observáveis como operadores bona fide sobre o espaço de Fock (atualmente, o teorema de Haag estabelece que o espaço de Fock não existe para TQCs interagentes) é um problema matematicamente delicado e requer regularização, usualmente por equipar cada laço com um emolduramento. A ação dos operadores de laço de Wilson tem a interpretação de criar uma excitação elementar do campo quântico o qual é localizado sobre o laço. Desta maneira, os "tubos de fluxo" de Faraday tornam-se excitações elementares do campo eletromagnético quântico.

Laços de Wilson foram introduzidos nos anos 1970 em uma tentativa de uma formulação de cromodinâmica quântica (QCD) não perturbativa, ou pelo menos como um conjunto de variáveis convenientes para lidar com o regime de interação forte da QCD.[2] O problema do confinamento, para qual os laços de Wilson foram projetados para resolver, permanece insolúvel até hoje.

O fato que teorias quânticas de campos gauge fortemente acopladas têm excitações elementares não perturbativas as quais são os laços que motivaram Alexander Polyakov a formular a primeira teoria das cordas, as quais descrevem a propagação de um laço quântico elementar no espaço-tempo.

Laços de Wilson desempenham um papel importante na formulação da gravidade quântica em loop, mas são substituídas pela rede de spin, uma determinada generalização dos laços de Wilson.

Em física de partículas e teoria das cordas, laços de Wilson são frequentemente chamados linhas de Wilson, especialmente laços de Wilson em torno de laços não contrácteis de uma variedade compacta.

Uma equação

linha de Wilson variável  (ou melhor laço de Wilson variável, uma vez que é sempre lidar com linhas fechadas) é uma grandeza definida por um traço de um trajeto potencial ordenado de um campo gauge  transportado ao longo de uma linha fechada C:

 / = [          ] ,     [  ]    .

Aqui,  é uma linha curva fechada no espaço,  é o operador trajeto ordenado. Sob uma transformação gauge

,
 / = [          ] ,     [  ]    .

onde  corresponde ao ponto inicial (e final) do laço (somente os pontos iniciais e finais de uma linha contribuem, onde tranformações gauge entre estas cancelam uma a outra). Para gauges SU(2), por exemplo, um tem  / = [          ] ,     [  ]    .

 é uma função real arbitrária de , e  são as três matrizes de Pauli; como usual, uma soma repetida ao longo de índices está implícita.

A invariância do traço sob permutações circulares garante que  é invariante sob tranformações gauge. Note-se que a grandeza sobre a qual está se estabelecendo o traço é um elemento do grupo de Lie gauge e o traço é realmente o caráter deste elemento com respeito a um das infinitamente muitas representações irredutíveis, as quais implicam que os operadores  não são necessários ser descritos à "classe de traços" (assim com espectros puramente discretos), mas podem ser genericamente "hermitianos" (ou matematicamente: auto-adujunto) como usual. Precisamente porque nós estamos finalmente vendo o traço, isto não significa que ponto sobre o laço é fechado como o ponto inicial. Todos eles dão o mesmo valor.

Atualmente, se A é visto como uma conexão sobre um "G-fibrado principal", a equação acima realmente deveria ser "lida" como o transporte paralelo da identidade em torno do laço o qual daria um elemento do grupo de Lie G.

Note-se que um trajeto ordenado exponencial é uma conveniente notação simplificada em física que esconde um certo número de operações matemáticas. Um matemático refere-se ao trajeto ordenado exponencial da conexão como "a holonomia da conexão" e o caracteriza pela equação diferencial de transporte paralelo que esta satisfaz.

Em T=0, a variável do laço de Wilson caracteriza o confinamento ou deconfinamento de uma teoria quântica de campo gauge-invariante, nomeada de acordo a saber-se se a variável aumenta com a área, ou alternativamente com a circunferência do laço ("lei de área", ou alternativamente "lei circunferencial" também conhecida como "lei do perímetro").

Em QCD de temperatura finita, o valor térmico esperado da linha de Wilson distingue entre a fase confinada "hadrônica", e o estado deconfinado do campo, e.g., o muito debatido plasma de quarks-glúons.

Comments

Popular posts from this blog